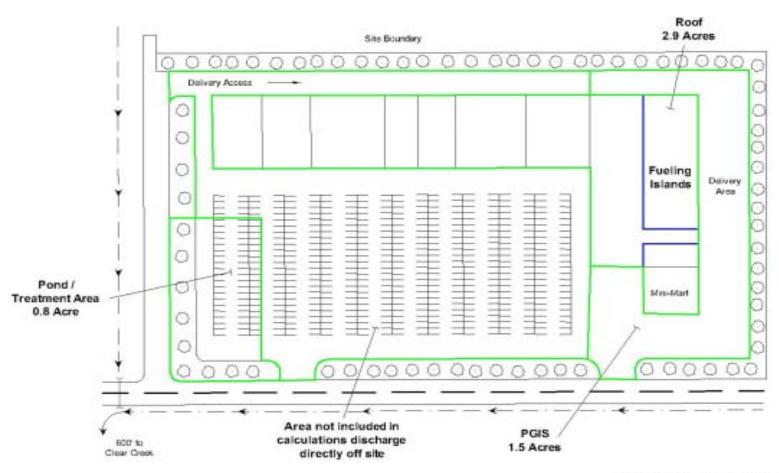

Redevelopment (Commercial Site)

Redevelopment (Commercial)

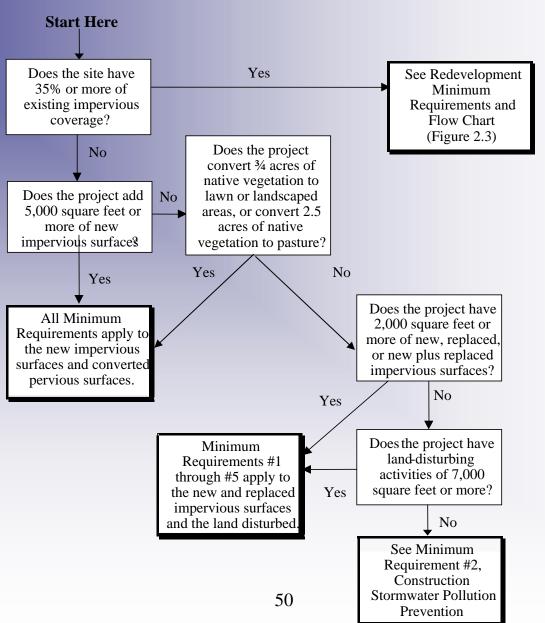
- Pre 1970's strip mall, with no stormwater protection to speak of
- Converting to gas station/convenience store plus various other stores
- Existing collection along streets to identified drainage channel



Commercial Redevelopment Existing Site Conditions

Stormwater Site Plan

- Won't repeat here but need to complete
 - Step 1: Existing Conditions (Section 3.1.1)
 - Step 2: Preliminary Development Layout (Section 3.1.2)
 - Step 3: Offsite analysis (Section 3.1.3)



Commercial Redevelopment Proposed Site Improvements

Step 4: Determine Applicable Minimum Requirements (Section 3.1.4)

Figure 2.2 Flow Chart for Determining Requirements for New Development

Figure 2.3 Flow Chart for Determining Requirements for Redevelopment

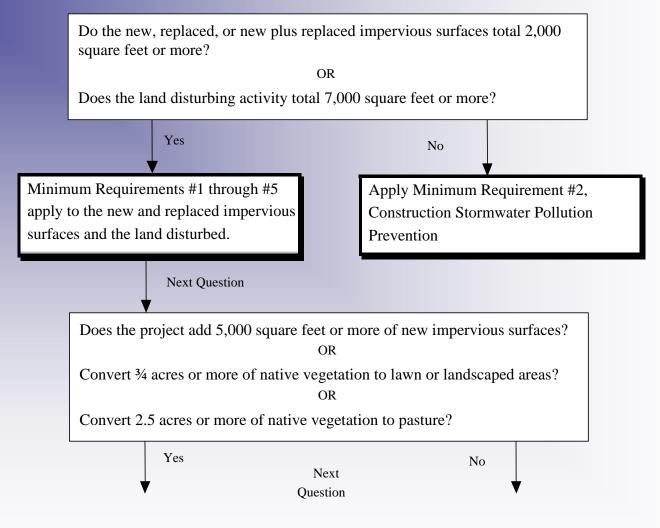
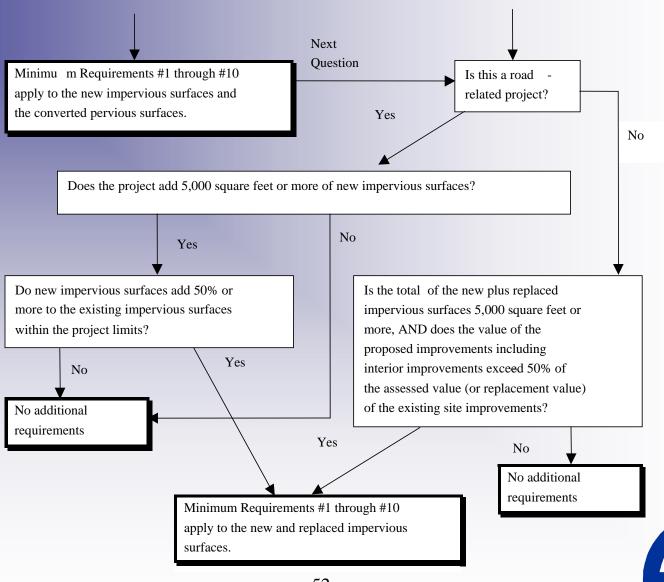



Figure 2.3 Flow Chart for Determining Requirements for Redevelopment

Wetlands Protection (MR #8)

- Section 2.5.8
- Meet standards in addition to treatment requirements in MR #6

Not discharging to wetlands on this project

Basin/Watershed Planning (MR #9)

- Section 2.5.9
- More stringent requirements may be placed on a project due to individual basin/watershed plans
- No special basin/watershed plan for this project

Permanent Stormwater Control Plan (Chapter 4)

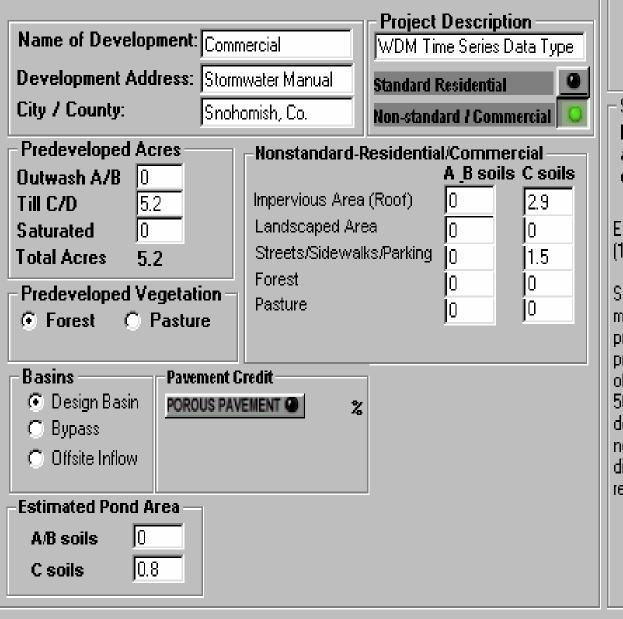
- I. Determine and read applicable minimum requirements
- II. Select Source Control BMPs
- III. Determine Threshold discharge areas
- IV. Select Flow Control BMPs and Facilities
- V. Select Treatment Facilities
- VI. Review selection of BMPs and Facilities
- VII.Complete Development of Permanent Stormwater Control Plan

Step II. Select Source Control BMPs (MR #3)

- Commercial site requirement
- Vol. IV is dedicated to Source Control BMPs
- Designer concerned with structural BMPs, Operational are Owner/tenant
- Treatment overlap with Vol. V
- Operational and Structural Source Control BMPs (Section 2.2)
 - Fueling at Dedicated Stations (p. 2-19)
 - Maintenance and Repair of Vehicles and Equipment (p 2-34)
 - Parking and Storage Vehicles and Equipment (p 2-48)

Step III. Determine Threshold Discharge Areas

- Thresholds on this project
- Total site area = 10 acres (435,600 sq ft)
- "New and Replaced" area = 5.2 acres
 - PGIS = 1.5 acres
 - Roof = 2.9 acres
 - Pond = .8 acres
- Remaining area (not controlled) = 4.8 acres
- 100 year flow increase 17.2 cfs
- Project requires treatment and flow control


Step IV: Flow Control BMPs and Facilities

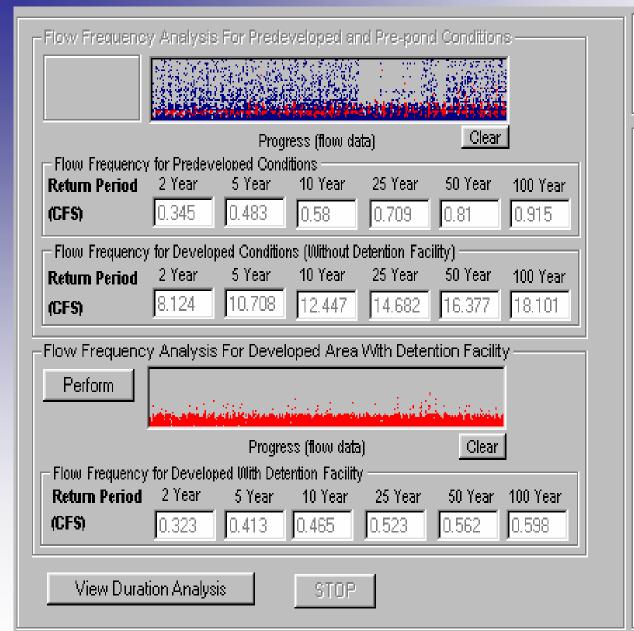
Minimum Requirement #5 (Section 2.5.5)

Select Flow Control BMPs and Facilities

- Minimum Requirement #7 (Section 2.5.7)
- Match developed discharge durations to predevelopment durations for the range of discharge rates from 50% of the 2-year up to the full 50-year peak flow.

Western Washington Hydrology Model

Step 2

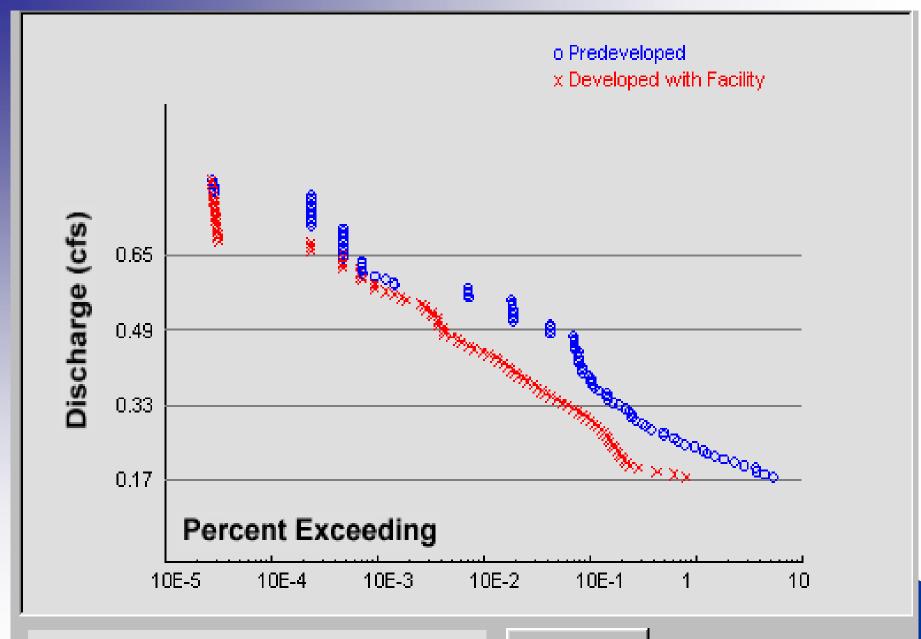

Fill in site information and list acres for each type of development.

Ecology Manual Hydrology Standard (1):

Stormwater discharges to streams shall match developed discharge duration to predeveloped durations for the range of predeveloped discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow. In addition, the developed peak discharge rates shall not exceed the predeveloped peak discharge rates for 2- and 10- year return periods.

Next->

Western Washington Hydrology Model


Step 7

Compare statistics.

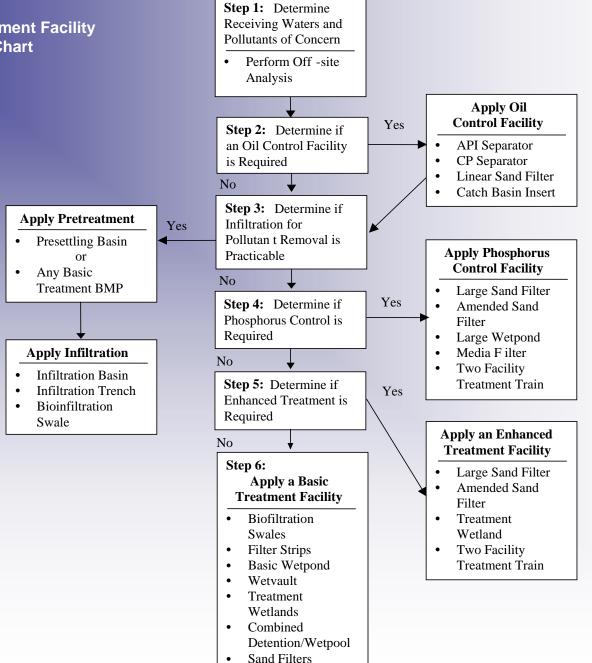
Ecology Manual Hydrology Standard (1):

Stormwater discharges to streams shall match developed discharge duration to predeveloped durations for the range of predeveloped discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow. In addition, the developed peak discharge rates shall not exceed the predeveloped peak discharge rates for 2- and 10- year return periods.

Flow Control (cont.)

- Standard Detention pond (Vol. III, Section 3.2.1) 75' x 75', 6' deep
- Multiple orifice restrictor Control Structure (Vol. III, Section 3.2.4) 24" riser with 2.1", 2.65", and 2.75" openings at 0', 2.6, and 5.25' levels
- Used Ecology spreadsheet and WWHM to calculate

• 2-year, 24-hour discharge 0.323 cfs



Step V. Select Treatment Facilities

- Select treatment facility from Volume I, Chapter 4
- Insert Figure 4.1 of Volume I here

Figure 4.1 Treatment Facility Selection Flow Chart

Enhanced Treatment

• See Vol. V, Section 3.4, Table 3.2

- Oil/Water Separator
- Two-Facility Treatment Train
 - Wet Vault
 - Sand Filter

Oil/Water Separator Sizing

Commercial Site Oil/Water Separator Sizing Calculations

(Calculations described in Vol. V, Chapter 11 BMP T11.10)

1.5 acres Effective Impervious Surface

1.5 acres Total Impervious Surface

100% Ratio of effective to Total

0.43 Multiplication factor from Table 4.1, Vol. V

6.82 cfs 2-year return frequency for post developed site (from WWHM)

2.93 cfs Design Flow rate (Factor times 2-year flow rate)

Separator Bay Design

6.31 cfs Design Flow rate times correction factor (2.15)

Calculate Forebay area 20 sq ft/10,000 sq ft of drainage area

6.53 Drainage Area/10,000 sq ft

130.68 Forebay area

13.07 Forebay length (area/assumed width)

Oil/Water Separator Sizing

Calculate Separator size (API (Baffle type)

0.033 fps Oil Rise Rate (V_t) (assumed BMP T11.10)

10 feet Separator Width (assumed, 6 to 20 feet)

0.4 Depth/width (assumed 0.3 to 0.5)

4 feet depth

121.21 seconds Minimum Residence time t_m=d/v_t

0.16 Horizontal velocity $V_h=Q/(d^*w)$ (Max 2.0 fps)

 V_h/V_t

1.66 F Vol. V, Table V-D

1.38 Turbulence and short-circuiting factor

31.72 Minimum Length of separator section $I(s)=F^*(V_h/V_t)^*d$

317 cu ft Minimum hydraulic design volume V=w *I(s)

2,372 gallons

44.78 ft total length

Wet Vault Sizing

Commercial Site Wet Vault Sizing Calculations

```
(Vol. V, chapter 10 BMP T10.20)
Follow steps for sizing on page 10-5, Vol. V
2.5 2-year, 24-hour rainfall (in)
6-month, 24-hour rainfall (in) (72% of 2-year)
PGIS Area (acres)
```

Calculation of Runoff volume from site

Weighted CN

98.00

0.20	S = (1000/CN)-10 (Page 2-24, Vol III)
1.56	Qd (in) = $(P-0.25*S)^2/(P+0.8*S)$ (Page 2-24, Vol III)
	(Average depth of runoff over site)
0.19	Volume of Runoff (ac-ft)
8,484	Volume of Runoff (cu ft)
	Vault volume (equal to Design Storm runoff volume)
40	Width of Vault (ft) (assumed)
3	Depth of Water (ft) (assumed)
70.70	Length (ft)

Sand Filter Sizing

Commercial Site Sand Filter Sizing Calculations

(Vol. V, Section 8.6 and BMP T8.10)

O.323 Design Flow rate (cfs) Based on the full 2-year, 24-hour rate from the PGIS area Calculated in WWHM (Vol. I, page 2-27)

Calculation of Sand Filter surface area (sq ft)

 $Qs = K^*I^*A_{sf}$ where i=(h+L)/L

Asf = Q_{sf}/K^*i from Page 8-15 Vol V

2 K (ft/day) Hydraulic conductivity (given by Ecology)

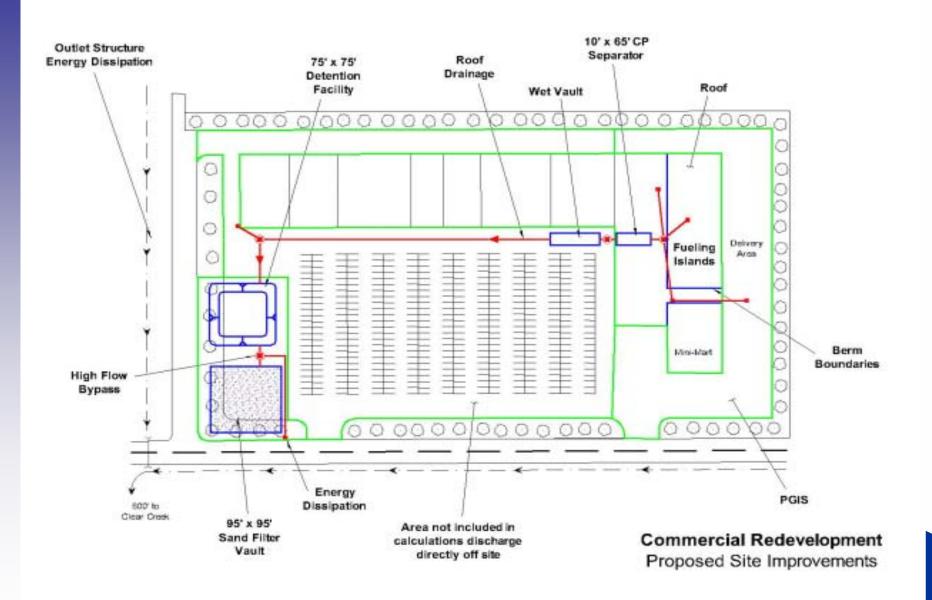
 $0.323 Q_{sf}$ (cu ft/sec)

27,907 Q_{sf} (cu ft/day)

1 h (ft) water depth above top of filter

1.5 L (ft) sand bed depth (given by Ecology)

1.67 i (ft/ft) hydraulic gradient of pond


70

3.67 F (ft/day) Filtration rate = K*i

7,611.05 sq ft Asf based on Asf = Qsf/K^*i

87.24 ft length of side for square sand filter

Step VI. Review selection of BMPs and Facilities and Step VII.

Complete Development of Permanent Stormwater Control Plan

- Prepare operations and maintenance manual for treatment and flow control facilities
- Chapter 4, Vol. V has guidance

Prepare SSP (Revisited)

- 1 Collect and Analyze Information on Existing Conditions
- 2 Prepare Preliminary Development Layout
- 3 Perform Off-site Analysis (at local governments option)
- 4 Determine Applicable Minimum Requirements
- 5 Prepare a Permanent Stormwater Control Plan
- 6 Prepare a Construction Stormwater Pollution Prevention Plan (SWPPP)
- 7 Complete the Stormwater Site Plan
- 8 Check Compliance with all applicable Minimum Requirements

Questions???

